首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34392篇
  免费   2405篇
  国内免费   1423篇
电工技术   512篇
技术理论   1篇
综合类   2338篇
化学工业   18973篇
金属工艺   1391篇
机械仪表   739篇
建筑科学   224篇
矿业工程   304篇
能源动力   675篇
轻工业   1285篇
水利工程   41篇
石油天然气   1859篇
武器工业   388篇
无线电   1759篇
一般工业技术   4965篇
冶金工业   638篇
原子能技术   157篇
自动化技术   1971篇
  2024年   25篇
  2023年   356篇
  2022年   439篇
  2021年   748篇
  2020年   705篇
  2019年   658篇
  2018年   687篇
  2017年   816篇
  2016年   1009篇
  2015年   1020篇
  2014年   1663篇
  2013年   1686篇
  2012年   2146篇
  2011年   2688篇
  2010年   2022篇
  2009年   2239篇
  2008年   1925篇
  2007年   2491篇
  2006年   2262篇
  2005年   2082篇
  2004年   1696篇
  2003年   1570篇
  2002年   1421篇
  2001年   1136篇
  2000年   953篇
  1999年   774篇
  1998年   639篇
  1997年   442篇
  1996年   391篇
  1995年   329篇
  1994年   298篇
  1993年   230篇
  1992年   170篇
  1991年   117篇
  1990年   106篇
  1989年   55篇
  1988年   45篇
  1987年   31篇
  1986年   21篇
  1985年   19篇
  1984年   24篇
  1983年   13篇
  1982年   13篇
  1981年   13篇
  1980年   7篇
  1979年   15篇
  1978年   9篇
  1977年   5篇
  1975年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
苯并噁嗪树脂作为一类新型的热固性树脂,具有分子设计性强、阻燃性能和耐腐蚀性能优异、固化时不需要强酸、无小分子放出等优点,在航空、建筑、电子等领域获得了广泛应用。本文主要介绍了苯并噁嗪单体的合成方法(溶剂法、无溶剂法和悬浮法)、降低苯并噁嗪开环聚合温度的方法(合成具有特殊基团的苯并噁嗪单体、添加催化剂)及苯并噁嗪树脂在形状记忆聚合物中的应用(与其他聚合物混合,纯苯并噁嗪化学改性),对苯并噁嗪形状记忆聚合物目前存在的问题进行了概述并对苯并噁嗪形状记忆聚合物的发展前景做出了展望。  相似文献   
82.
The molten salt electrolytic method for the preparation of titanium carbide and silicon carbide composites has been subjected to a systematic investigation by experimental analyses and thermodynamic calculations. It has been confirmed that the electrolysis of high titanium slag in the presence of mixed graphite powders generates intermediates CaTiO3, Ti2O3, TiO, Fe3Si and objective carbonous products TiC/SiC. It has been furthermore found that the deoxidization process depends critically on a number of process parameters, namely, electrolyte composition, graphitic regime, reaction temperature, cell voltage and reaction time. After careful optimization of these parameters, TiC/SiC nanocomposites with particle sizes of 10–174 nm has been produced by electrolysis of high titanium slag and graphite mixtures in molar ratio of 1:2 referred to Ti:C under 3.2 V at 900 °C for 6 h in 1 mol%CaO-CaCl2-NaCl molten salt and with particle sizes of 12 nm~207 nm in 1 mol%CaO-CaCl2 electrolyte.  相似文献   
83.
The cytotoxicity of monticellite based bioactive ceramic powder, which was synthesized from boron derivative waste has been determined by in vitro assays of MTT, NRU, and JC-1 staining. The toxicity of powder on different mammalian cell lines (3T3-L1, HUVEC, CRL-2120) was evaluated at the concentrations of 10, 100, 200, 400 and 800?µg/mL to justify its potential for biomedical applications. The obtained results showed that monticellite based bioactive ceramic powder possesses not only bioactive feature but also biocompatible characteristic at the concentration range of 10–200?µg/mL. Hence, monticellite based bioactive ceramics have high potential as a bone graft substitute for bone void filling and coating applications.  相似文献   
84.
C.L. Yeh  G.T. Liou 《Ceramics International》2018,44(16):19486-19491
Fabrication of alumina-chromium carbide composites was investigated by PTFE-activated Cr2O3/Al/C combustion synthesis. PTFE was employed as not only a reaction promoter, but a carburizing agent. Three reaction systems were prepared with different contents of carbon for the synthesis of Cr23C6, Cr7C3, and Cr3C2. The amounts of PTFE were selected to ensure combustion synthesis in the SHS (self-propagating high-temperature synthesis) mode and to provide carbon in quantities of 15 and 25?mol% of the total carbon. Experimental results showed that the combustion wave velocity and temperature decreased with increasing carbon, but increased with PTFE. A correlation between combustion wave velocity and temperature contributed to determination of the activation energy Ea =?89.15?kJ/mol for the combustion reaction. The increase of PTFE also improved formation of chromium carbides. As a result, the Cr23C6– and Cr7C3–Al2O3 composites were produced with almost no impurities. Due to a loss of carbon in carbothermic reduction, the Cr3C2–Al2O3 composite was obtained with Cr7C3 as the secondary carbide. SEM micrographs and DES analyses indicated that spherical carbide grains with a size of 0.5–3.0 μm were synthesized.  相似文献   
85.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
86.
87.
A spray co-precipitation method was developed to efficiently synthesize Nd:YAG nano-powders. The effects of spray speeds and solution concentrations on the crystallization processes of calcined precursors have been studied. The results indicated that the pure phase of YAG could be obtained by three different crystallization processes owing to different homogeneity levels of Y and Al mixing. Pure YAG powder was obtained at 850?°C and the phase purity persisted to 1600?°C. Using the obtained powders, transparent ceramics with the in-line transmittance up to 80.2%@400 nm and 83.1%@1064?nm were fabricated by gel-casting method and hot isostatic pressing sintering. Furthermore, the microstructure and laser properties of the transparent ceramics have been measured. The maximum laser output of 7.015?W has been obtained with an oscillation threshold and a slope efficiency of 0.235?W and 59.4%, respectively.  相似文献   
88.
Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only solvent. Morphological characterizations demonstrate that the LSCF fibers have highly crystalline structure with uniform elemental distribution. After heat treatment, the average fiber diameter is 250 nm and the porosity of the nanofiber tissue is 37.5 %. The heat treated LSCF nanofibers are applied directly onto a Ce0.9Gd0.1O1.95 (CGO) electrolyte disk to form a symmetrical cell. Electrochemical characterization is carried out through electrochemical impedance spectroscopy (EIS) in the temperature range 550?°C–950?°C, and reproducibility of the electrochemical performance for a series of cells is demonstrated. At 650?°C, the average measured polarization resistance Rp is 1.0 Ω cm2. Measured performance decay is 1 % during the first 33?h of operation at 750?°C, followed by an additional 0.7 % over the subsequent 70?h.  相似文献   
89.
The PbClxS1-x and Pb1-xBixS (x? =?0–0.05) bulks were fabricated with a facile method of hydrothermal synthesis and microwave sintering, and the effect of anionic and cationic donors on the thermoelectric performance of PbS was investigated. Although Cl? and Bi3+ both effectively improved the thermoelectric properties of n-type PbS, more excellent thermoelectric performance was obtained from Cl? doped samples because of higher electrical property and lower thermal conductivity at higher temperature (T? >?600?K). The thermoelectric figure of merit (ZT) reaches 1.04 for PbCl0.015S0.985 at 800?K and increases with temperature increasing without sign of saturation, which is probably the highest value ever reported for single-phase polycrystalline n-type PbS. The results also indicate that the hydrothermal synthesis and microwave sintering can realize anion doping as well as cation doping for n-type PbS at low cost, and PbS should be a robust alternative for PbTe thermoelectric materials.  相似文献   
90.
A simple, soft, and fast microwave-assisted hydrothermal method was used for the preparation of nanocrystalline cobalt ferrite powders from commercially-available Fe(NO3)3?9H2O, Co(NO3)2?6H2O, ammonium hydroxide, and tetrapropylammonium hydroxide (TPAH). The synthesis was conducted in a sealed-vessel microwave reactor specifically designed for synthetic applications, and the resulting products were characterized by XRD, FE-SEM, TEM, and HR-TEM. After a systematic study of the influence of the microwave variables (temperature, reaction time and nature of the bases), highly crystalline CoFe2O4 nanoparticles with a high uniformity in morphology and size, were directly obtained by heating at 130?°C for 20?min using the base TPAH. Dense ceramics of cobalt ferrite were prepared by non-conventional, microwave sintering of synthesized nanopowders at temperatures of 850–900?°C. The magnetic properties of both the nanopowders and the sintered specimens were determined in order to establish their feasibility as a permanent magnet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号